

An Agency of Industry Canada Centre de recherches sur les communications Canada

Un organisme d'Industrie Canada

The Importance of APIs for Certification of SCA Radios

Steve Bernier, M.Sc.,

Senior Architect & Project Leader,
Advanced Radio Systems,
Communications Research Centre Canada

Outline

The Software Communications Architecture (SCA)

- *Compliance
 - > SCA compliance
 - Domain-specific API compliance
- Conclusion

The SCA

- The Software Communications Architecture (SCA) is mainly used for the creation of military Software Defined Radios (SDRs)
 - The SCA was created for the US DoD Joint Tactical Radio System (JTRS) program
- However, the SCA standardizes generic features of software defined embedded systems
 - > The installation process for applications
 - The deployment of applications on heterogeneous distributed platforms
 - > The control of applications
 - > Introspection, health status monitoring

The SCA

 Standardizing APIs for common features enables the use of generic tools

Standard APIs

SCA Devices and applications

SCA Core Framework

The SCA also helps make application source code more portable

- > Defines a standard for modeling software components and assemblies (Component-Based Development)
 - Better documentation leads to better portability
- > Imposes a standard for system calls used in applications (SCA POSIX AEP)
 - Makes source code more portable across different operating systems
- > Imposes a standard for communications between software components (CORBA & MHAL)
 - Developers don't deal with transports directly

The SCA

From a software development perspective, the SCA is a <u>Component-Based Development</u> architecture

What is Component-Based Development?

- CBD is a development paradigm where the smallest unit of software is a component
- With CBD, an application is 'assembled' using software components much like a board is populated with hardware components

The SCA

CBD promotes the COTS culture and is enabling the industrialization of software

- The goal is to apply the hardware development paradigm to software
 - > Purchase software components from a 'spec-sheet' catalog
 - Describe how to influence behavior (config properties)
 - Describe how to interface (ports)
 - Describe resource consumption (capacity properties)
 - Describe resource requirements (capability properties)

Graphical representation for a software component model

Graphical representation for an assembly of software components

The SCA

The goal of the SCA is to allow applications to be quickly ported across different SCA compliant platforms

SCA platform

Outline

The Software Communications Architecture (SCA)

- Compliance
 - > SCA compliance
 - Domain-specific API compliance
- Conclusion

Compliance

- The certification of an SCA system can be viewed as a two-step process
 - > First Step: SCA Compliance
 - > Second Step: Domain-Specific API compliance
- SCA compliance only deals with the "Deployment and Configuration" aspect of software components
- Domain-specific API compliance deals with the APIs provided by the SCA Devices of a platform which are used by SCA Applications

- The SCA specification document only defines APIs for Deployment and Configuration (D+C)
 - The D+C is a process by which software is deployed onto processing elements (GPP, DSP, FPGA) of a platform
 - ➤ The D+C abstracts all types of processing elements using two type of SCA Devices: LoadableDevice and ExecutableDevice
 - > The D+C standardizes how software components are initalized, released, started, stopped, interconnected, configured, queried

SCA D+C Standard APIs for Application components:

SCA D+C Standard APIs for Platform Components:

- SCA compliance for an application means it has to meet the D+C requirements:
 - > It comes with the proper description files (XML domain profile)
 - ▶ It only uses system calls allowed by the SCA POSIX AEP specification
 - ▶ It uses minimum CORBA and/or MHAL for communications between software components
 - > It meets a number of SCA Core Framework requirements
 - Support standard input arguments, Provide standard properties, etc.

SCA compliance for a platform means it has to meet the D+C requirements:

- > It meets the D+C requirements
- It provides the system calls defined in the SCA AEP POSIX specification
- > It provides minimum CORBA and possibly MHAL support
- > It provides an SCA Core Framework
- > It provides at least one SCA ExecutableDevice which is used to deploy the software components of an application
- Each SCA Device comes with the proper description files (XML domain profile)

Outline

The Software Communications Architecture (SCA)

- Compliance
 - > SCA compliance
 - Domain-specific API compliance
- *Conclusion

- Domain-specific APIs are essential for application portability
 - An application cannot easily be ported to platforms that don't provide the required domain-specific APIs

- The SCA is independent of the application domain
- Different domains are supported by domain-specific APIs

Base Station

APIs

JTRS
Waveform
applications

Automotive APIs

JTRS APIs

SCA Core Framework

- The Joint Program Executive Office (JPEO) has released a number of domain-specific APIs:
 - The "JPEO JTRS Standards APIs" fall under two category: basic and complex APIs
 - > The complex APIs are made of basic APIs. Here is the list of the complex APIs:

AudioPortDeviceApi	MhalApi
EthernetDeviceApi	SerialPortDeviceApi
FrequencyReferenceDeviceApi	TimingServiceApi
GpsDeviceApi	VocoderServiceApi

- The OMG "Software-Based Communication (SBC)" Domain Task Force (DTF) has also released a number of models that can be used to define radiospecific APIs
 - > Timing, Serial IO, Audio, Antenna, etc.
- The SDR Forum "Transceiver Subsytem Interfaces Task Group" is working in a new API
 - Transceiver API has been submitted

*The SDR Forum
"Antenna API Task
Group" has
worked on an set
of APIs for
different types of
Antennas

Figure 14: Antenna Command and Control UML diagram

Outline

The Software Communications Architecture (SCA)

- *Compliance
 - > SCA compliance
 - Domain-specific API compliance
- Conclusion

Conclusion

- Compliance is a two step process:
 - > SCA-compliance
 - Domain-specific API compliance
- SCA compliance is independent of a specific application domain
 - > The JPEO relies on a number of tools (JTAP, WTT, DRP) and manual inspection for SCA-compliance
- No single organization offers a comprehensive set of radio-specific APIs
 - Immaturity and lack of APIs leads to the use of proprietary APIs which affects portability

Conclusion

- The next big step for Software Defined Radios is the standardization of radio-specific APIs
 - Will bring application portability to another level
- * Who will set the standard?

Domain Specific APIs

JTRS APIs JTRS Waveform applications

Software
Defined Radio
APIs

SCA Core Framework

Questions?

Contact information: steve.bernier@crc.ca

www.crc.ca/sdr