- SCA ADVANCED FEATURES -
OPTIMIZING BOOT TIME, MEMORY USAGE, AND MIDDLEWARE
COMMUNICATIONS

Steve Bernier (CRC Ottawa, Canada; steve.berniar@icca);
Charles Auger (CRC Ottawa, Canada; charles.auger@ara);

Juan Pablo Zamora Zapata (CRC Ottawa, Canadazamnra@crc.gc.ca);
Hugues Latour (CRC Ottawa, Canada; hugues.latowr@cca);
Mathieu Michaud-Rancourt (CRC Ottawa, Canada; mooa@crc.gc.ca)
Communications Research Centre Canada (CRC)
Ottawa, Ontario, Government of Canada.

ABSTRACT been used in communication devices for decades. SCA
Radios only started to be deployed a few years ago.
This paper describes a list of advanced featuratscéin be However, due to more stringent portability and
used to optimize boot time, memory footprint andinteroperability requirements, SCA radios generatiytain
communication speed for SCA Radios. The paper firsmnuch more software than previous generations of SDRB
describes the most common performance issues ard thbe more specific, SCA radios use some softwaradogss
presents a number of advanced SCA features thabean the input/output signals. Most SCA Radios contaiuesal
used to address each issue. Each feature is discuss million lines of source code. And as a result, S@aélios
details to exhibit under which condition they caest generally take longer to boot and use more membuay t
perform. Performance metrics are presented for fsathre. older SDRs.
Finally, the paper concludes with an outlook on thext
wave of advanced optimization features. The first generation of SCA Radios was considgrabl
slower to boot and required a large amount of noati
memory. Unfortunately, that generation of SCA radi® at
1. INTRODUCTION the source of most of the bad press the SCA hderedf
from. However, many years of research and developme
The Joint Tactical Radio Systems (JTRS) is a US Dolhave enabled the SCA community to address thosedss
program. Its objective is to provide the DoD witheded and deploy SCA radios that meet the most stringent
communication capabilities through a family of affable, requirements [2, 3, 4, 5].
interoperable radios. The JTRS radio sets are &odtw
Defined Radios (SDRs) that can be used to quicidid f This paper describes several optimizations antesys
new communications capabiliies. The JTRS prograndesign approaches that have been proven to adsress of
achieves its goal by maximizing the reusabilitycommon the most serious performance issues of SCA radibs
software and hardware for different radios. paper introduces novel features and revisits featur
introduced in previous papers [6, 7, 8]. Sectiooflthis
The software implemented for JTR radio sets muspaper addresses boot time optimizations, sectidis@isses
comply with the Software Communications Architeetur memory footprint optimizations and section 3 présen
(SCA) specification [1]. The SCA specification déses a communication speed optimizations. Section 4 takésok
Core Framework (CF) which provides the infrastroetto at the future of SCA Core Frameworks and section 5
allow software components to plug-and-play. The Stide concludes the paper
Framework specification also describes set of ratesAPIs
that must be used by developers of SCA-compliaftivaoe 2. BOOT TIME OPTIMIZATIONS
components.
The SCA relies on software components that musibie to
The term “SCA Radio” is often used as a synonym fo plug'n’play with each other. In addition, the SCApports
“Software Defined Radio”. However, the later haveeb plug’n’play of components that might run on diffete
around for much longer than SCA Radios. Software haprocessing devices. SCA components are very modulgr

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

are described using a number of different filestammng
meta-data. An SCA waveform application is essdtiah

assembly of components. Assembly descriptors ifyenti

which components need to be instantiated, how tieey to
be interconnected, and what should be the defailieg for
each of their configurable properties. All that exably
information is stored in a number of files. The saistrue
for node assemblies, which describe Devices andic®sr
that need to be launched upon power-up.

In order to run the different components of areagsy,
the SCA CF must read a number of files and parse
metadata they contain. For each component to bleybap
it must also download the binary code to the setktarget
Device for execution. This means reading, transfgrrand
writing many files.

The above discussion shows that the SCA is fiterize
it relies on the use of a file system for flexitiliand
modularity purposes. But the fact that file systecgess is
typically slow on embedded systems has the consequaf
introducing delays that can significantly affec¢ thoot time
of a platform. The sub-sections below present sofrihe
most common issues along with optimizations that leelp
minimize their effects.

2.1 File System Integrity

Given the fact that the SCA file system containgicad
information, the integrity of it is fundamental toe proper
functioning of an SCA radio. There are many waysrisure
file system integrity. One common technique is &fgrm
an integrity check every time the SCA Radio is pmee
Depending on the type and size of file system beised,
this check can take anywhere from a few seconds/¢o a
minute.

One way to minimize the impact of a file systeneah
on the boot time is to make most of the file systemd-
only. The integrity check only needs to be perfatroa the
portion of the file system that is being used foiting. The
SCA Core Framework needs very little storage foiting
files as it mostly reads them. Only the SCA Devibesg
used as targets for deployment of software compsnered
significant storage for writing. And this can adtyabe
alleviated with a caching feature (see sectigr.4
ExecutableDevice File Cachihg

which safeguards the integrity in real-time assfitge being
written and deleted.

2.2 Native File Access

Most embedded systems use flash memory which can be
very slow compared to run-time memory. SCA Radias a
no exception. It is therefore crucial to use féestH memory.

But in any case, using a Core Framework that isskpof
avoiding or optimizing file access will directlyamslate into
time savings for Radio boot up.

th

2.2.1 DomainManager Native File Access

The DomainManager accepts registration of all
DeviceManagers. A DeviceManager is one of the BGA
components to be started upon power up. In fasingle
SCA radio might start several DeviceManagers te tekre

of several boards. The DeviceManager does a faguat

of file reading to learn which components (SCA Reg and
Services) need to be launched. Unless the Devicelytaris
hard-coded to launch all the right components amdigure
them appropriately, there is no way to avoid regdine
node assembly metadata files.

Once the DeviceManager has read the metadata and
launched the SCA Devices and Services, it muststegi
with a DomainManager. The DomainManager needs to
collect the full list of Devices and Services regied by all
DeviceManagers running in the SCA radio. This is
necessary for application deployment.

However, when the DeviceManager registers with a
DomainManager, because of the lack of a standand i&P
cannot provide all the necessary deployment inftiona
about its Devices and Services. Therefore, the
DomainManager must download and read the Metadeta f
each registered SCA Device.

When the registering DeviceManager is runnington t
same processor as the DomainManager, the metadata f
Devices and Services is almost assured to be aloleess
natively by the DomainManager. Using native filecess,
the DomainManager can read up to 40% faster, wbarh
translate into the saving of several secofdble 1 shows a
performance comparison regarding how much timelkies
to read a file natively compared to via the SCA flystem
layer. The tests were executed in two differentrafpeg

The choice of the file system driver has also beemnvironments as illustrated Trable 1

proven to make a substantial difference. Somesfiigems
have been able to perform in a few seconds whatr difle
systems take tens of seconds. Another way of avpidi
lengthy file system check is to use a journaling fiystem,

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Table 1 - File Access Time Metrics

Test System File | SCA File| Native File| Gain
Size System | System
Linux, Pentium 3GHz| 4MB 355ms 20ms 94%
INTEGRITY, PPC 409 1.5MB| 2500ms 1500ms 40%
400 MHz

2.2.2 DeviceManager Optimized Registration

When a registering DeviceManager is running onflareint
processor from the DomainManager, native file asces
acceleration can’'t be used. One workaround is taadly
add a specialized registration APl on the Domainadggzm,
which can be used by a DeviceManager to provid
deployment information (gathered by the DeviceMamag
during the node boot) regarding the registeringi€es/and
Services.

The regular registration process for an SCA Deuses
a minimum of 19 CORBA calls. Some of those calls ar
very slow as they are used to copy metadata fildss
optimized registration feature can provide sigaific
performance gains and speed up the boot up sequmnce
avoiding the majority of those call$able 2 shows metrics
comparing the performance of optimized registratiersus
standard registration. The tests used to producseth
metrics employed two different operating environteesith
variations of 1 Device and 4 Devices in each. Hststwere
used to measure how long it took the DeviceMandger
register its Devices with a DomainManager running
different processor.

Table 2 - DeviceManager Registration Time Metrics

Configuration Standard Optimized Gain
Registration | Registration

Linux Pentium, 2 GH4 0.56 sec 0.19 sec 66%
1 Device
Linux Pentium, 2 GHz 1.53 sec 0.24 sec 84%
4 Devices
LynxOS PPC 405, 400 0.86 sec 0.13 sec 85%
MHz, 1 Device
LynxOS PPC 405, 400 2.33 sec 0.22 sec 91%
MHz, 4 Devices

2.2.3 ExecutableDevice Native file access

Since the SCA is a distributed system, it is assumhat
SCA components need to be downloaded to target SC
Devices (i.e. a LoadableDevice or an Executabletgvi
However, target SCA Devices can also be implemetded
determine if the files being downloaded are nagivel
accessible. When that is the case, the deploymkmno
application can benefit from the performance impraents
described in tabl&able 1.

Ultimately, all file copies, even native files ¢ep can
be avoided by allowing target SCA Devices to ndyive
access the files where they have originally beestalted.
With this feature, time consuming copies can beidmaah
Saving copies of each component artefact can bg ver
significant; the binary code alone can be seveedahytes.
But this feature may not be useful if the file gystwhere
the files are located is set to read only.

2.2.4 ExecutableDevice File Caching

Another way to avoid file copies is to make tarGgEA
Devices use a file cache. Target Devices can pesale the

Siles they are sent. With this feature, a copyrig/anade the

first time a same file is sent to a same targetiéewvhich
can be useful for SCA radios that always run thmesa
applications, deployed using the same target Dsvice

Such a feature requires that target SCA Device® ha
access to a permanent file system (e.g. flasheSthe first
deployment usually happens during manufacturingddéd
radios benefit from this feature. For SCA Devicesng
volatile memory, benefits are obtained when the esam
application is repeatedly launched/shutdown without
powering down the Radidable 1 provides estimates of the
time it takes to copy files and thus how much ticam be
saved with this caching feature, which is quiteniigant
given the fact that the deployment of an SCA ajpilin
typically involves the copy of several binaries.isTfeature
can also be used in combination with native fileess.

3. MEMORY FOOTPRINT OPTIMIZATIONS
3.1 XML Parsing

All of the SCA metadata which contains informatiaimout
SCA software components and assemblies is desciibed
XML. CRC measured how much time and dynamic memory
is required to parse the metadata information usimge
different approaches. The first approach uses adatd
COTS parser called Xerces-C++ [9]. The second ambro
consists in reading a digested XML format insteddhe
standard text format. The third approach consistssing a
specialized parser that can read the standard S®A X
files. The tests were executed on a Linux Desktopr&
Pentium processor using a metadata file contairhrey
é‘escription of 50 component properties. The resates
shown inTable 3 and described in the next three sections.
Each test was executed 10 times and the metrice wer
averaged out.

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Table 3 - Parsers Performance Metrics

Parsers Static Dynamic Parsing
Memory Memory Speed
Xerces-C++ 3,000 KB 66 KB 6.7 ms
Digested 300 KB 8 KB 1.1 ms
Specialized 420 KB 10 KB 1.7 ms

3.1.1 Xerces-C++ Parsers
Xerces-C++ is a very popular open-source XML patkat

environments, but it is mainly used for desktoplizptions.

CRC used Xerces-C++ and implemented a number

parsers to read the different XML files of the SCferces-
C++ is available as a library of several mega biytesize.

The SCA parsers were built using static linkingickh
required 2.6MB of the Xerces-C++ library. The toséhtic
size of the parsers was of 3MBable 3 presents the
performance metrics for execution of the parsers.

3.1.2 Digested XML Parsers

A digested XML parser is a parser that reads XMeésfin
an intermediate binary format. The
approach is that computers can process digestedytfites
much faster than plain text files that need to laesed
character by character.

The digested file format is produced off-line laading
the standard XML and saving only the relevant imfation
in a binary format. CRC created a few variationstlué
binary format along with binary readers that corddd the
same XML files as the Xerces-C++ parsers. The adgen
of this approach is performance, but the disadegnis the
proprietary file formats used for the digested infation.

The total static footprint needed for these pargeB00
KB which represents a major improvement over thesgra
based on Xerces-C++. As shown Table 3, the digested

idea behind thi

The total static footprint for the specialized XML

parsers is of 420 KB which is still a very impressi
improvement over the parsers based on Xerces-Cst.

A

show inTable 3, this approach is virtually as good as the

digested XML parser approach without relying on
proprietary file format.

3.2 Address Space Collocation

a

has b ied f ; bedded . The SCA specification employs many concepts from th
as been compiled for a few embedded system opgratl Component Based Development (CBD) paradigm [10, 11]

0\éyhich promotes reusability and adds flexibility sgstem

esigns by creating applications from an aggregatd

independent components. For an SCA applicatiors thi

translates into multiple Resources, each perforraiisgbset

of the waveform’s functionality (e.g. FFT, encoding

filtering).

While having many advantages at the design lekied,

approach, compared to having a single Resource that

implements the full functionality of an applicatiomay
increase the static footprint of the applicatiospexially in
environments that do not support shared librarigss is
due to the basic OS/CORBA/SCA functionality thatlea

SResource must have, independently of their apjpdicat

specific functionality. For example, a typical sipe a fully
implemented, statically linked, SCA Resource thaesu
several properties and ports and implements congitgal
processing algorithms is 1 MB. Approximatly 50%tbét
footprint (500 KB)
infrastructure for a component.

is associated to the fixed-cost

In memory-constrained environments, one way to

alleviate the cost of extra footprint for multigemponents

is to use the concept of ResourceFactory. An SCA
ResourceFactory can be used to launch many Resource

inside a single address space. Therefore, at thde@s,
instead of having one process (i.e. one addresse}par
each Resource, a single process is created for
ResourceFactory which then creates different tébkeads)

XML parsers also used much less runtime memory angh e giferent Resources to be launched. THiwal the

performed much faster.
3.1.3 Specialized XML Parsers

A specialized XML parser is a hand-crafted pardeat t
knows specifically how to read the SCA XML fileshd

information is parsed.

fixed-cost for basic OS/CORBA/SCA functionality twe
paid only once for the address space, and re-ugeitheb
different tasks. And logically, the overall footpti
improvement increases proportionally to the numbér

Resources being created inside a ResourceFacttrgrra

the

- . than as separate address spaces. For example, thsing
.CRC specialized parsers are Pased on state machmggove numbers of 1 MB per Resource, 50% of whiches
mferrr](_ed frohm theb SCA XML gle f(()jrmatis. -Lhe sfate fixed cost, an application composed of ten Ressurnay
machines have been optimized and only the relevant,, g approximately 5 MB of static footprint whenrahed

by a ResourceFactory.

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Furthermore, using appropriate SCA tools, 100%hef feature allows CORBA objects (e.g. SCA Componetus)
source code for a ResourceFactory can be geneastdd communicate using specialized, fast, communication
does not require any modification to previously @leped transports. Using pluggable transports can yieldréssive
components for them to run into a ResourceFactddyess performance [7, 14].
space.

Unfortunately, early SCA radios did not make u$e o

The concept of co-localizing multiple componemtsai pluggable transports; they relied on standard TRER& a
single address space can also be applied to otB& S transport for CORBA. The use of TCP/IP is fine for
entities. For example, on single node systems, theommunications between components located across th
DomainManager and DeviceManager can be co-located internet, but it is very slow for communicationstween
the same address space, yielding similar improv&sr(@8% components within a same embedded platform.
for two components) as for Resources. Note that co-
localizing components inside a same address spagalso 4.1 CORBA Performances
yield savings in terms of dynamic memory (e.g. Demage.

Co-location can also be used for SCA Devices andcss. The performance of CORBA in the context of the SBA
nearly absent from the research community litegatlirhas

4, COMMUNICATION SPEED OPTIMIZATIONS only been covered by a few papers [7, 14, 15, T6¢ goal
of this section of the paper is to provide one more
4.1 The Need for Middleware contribution. CRC has created a simple SCA apypdinato

measure how long it takes to transfer a buffer afad
The SCA relies on software components that mustieto between SCA components. The application is called
plug'n’play with each other. Software componentsitbu “PerformanceApp” and is made of three SCA Resource
from third party organizations may be implementeihgg components. The first Resource is called the
different programming languages. Interoperabiligtviieen PerformanceAnalyser. It is used to produce variatite
software components can’t rely on source code autef sequences of octets or doubles and to send thersesgito
(e.g. header files or libraries), it must be acbdvthrough another Resource. Each sequence produced is tEmmpst
middleware. For that purpose, the SCA has chosemwéll- just before being sent. The PerformanceAnalyser alsan
established standard for middleware called CORBAe T receive the time-stamped sequences and computeriiet
use of middleware is at the heart of the compomased took for a sequence to travel back to the
development paradigm. This fairly recent prograngmin PerformanceAnalyser.
paradigm is widely used in other markets and tigeimic
the hardware component paradigm. The second SCA Resource is called PassThroughk. Thi
Resource receives data sequences and simply meitans

The hardware component industry has been verthem. In the application used for this paper, taesfhrough
successful at producing reusable components. HaedwaResource retransmits all sequences back to the
components can easily be assembled together euwibieyif PerformanceAnalyser. The third and last componénhe
come from different manufacturers. And this candeme application is the AssemblyController Resource used
without the implicit knowledge of how componentsvéa coordinate the application functionality.
been created. The assembly of components onlysrelie

their behavior specification (e.g. pinout, protgcand their CRC executed the PerformanceApp in three different
requirements (e.g. voltage). The software componerdpplication deployment configurations and measuttesl
paradigm strives to achieve the same success ofithege. average time it takes for a data sequence to tfewel the

PerformanceAnalyser component to the PassThrough

CORBA allows components to be connected to eachomponent and back. For each deployment configurat
other during runtime. Connections are not achieusihg two types of data sequence were transmitted: segqueh
source code, a compiler, and a linker. SCA compenare octets (8 bits) and sequences of doubles (64 bits).
independent of one another and they provide irtedaised addition, each type of sequence was transmittedwmn
through connections. This is akin to hardware camepts different sizes: 1024 or 2048 elements. For each, @
connected by traces between pins on a printeditlboard. thousand sequences were transmitted. Each testrazamas
CORBA has been used for real time embedded systeras executed three times and the measurements weragader
long time. During the late 1990s, CORBA evolved and
became more appropriate for smaller and faster dddue The first configuration had both the
systems. One key CORBA feature for realtime systsrttee ~ PerformanceAnalyser and the PassThrough components
use of specialized “pluggable transports” [12, 1Bhis deployed on the same processor. In this configamatihe

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

transport used was TCP/IP. The tests were perfoumset)

two different Operating Environments (OE) runnirige t
SCARI++ GT Core Framework and ORBexpress RT. Thenstantiation of pre-existing SCA Resource into iagle
first OE consisted of a laptop running Linux, useng Intel
Centrino processor clocked at 2 Ghz. The second OPBerformanceAnalyser and the PassThrough) are bhaate
consisted of a single board computer running tree@Hills
INTEGRITY operating system on a AMCC 405GPr bypass any transports and use function invocatifmms
PowerPC processor clocked at 400 Mrable 4 andTable 5
present the average round-trip times for eachitesticro-

seconds.

Table 4 — Intel/X86 OE Round Trip Metrics using TCRIP

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip 80 129 66 74
time in usecs:

Table 5 — INTEGRITY/PPC OE Round Trip Metrics using

TCP/IP
Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip 3334 7272 1428 1767
time in usecs:

The second configuration is exactly the same adirst
configuration with the INTEGRITY/PPC OE, except the
CORBA transport that was used. In this configuratio
TCP/IP was replaced by a pluggable transport called
INTCONN. The ORBexpress RT ORB makes use of a thig he next generation of SCA Core Frameworks willvite
theeven more optimizations features. New features muibist

high-speed proprietary

transport

available

for

INTEGRITY RTOS. It is important to note that thest was
done without changing any source code in any ofSG&
components. The test was conducted by telling (DREBA
middleware to first use INTCONN if possible. Andisth
configuration can actually be done at the commamal for
properly implemented SCA components. Tallable 6
presents the average round-trip time for eachitesticro-
seconds and the percentage of improvement ovefirdte

test configuration.

Table 6 - INTEGRITY/PPC OE Round Trip Metrics using

INTCONN

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip 2215 4768 1042 1273
time in usecs:
% Improvement over 33.56 | 34.43| 27.0% 27.98
TCP/IP

The third configuration had both

space. It was tested with the same PowerPC OEingheé
previous configurations. This last configuratiofiag on the
support of ResourceFactory by an SCA Core Framework

this case, with proper SCA modeling tools, an SCA
ResourceFactory can be automatically generatelioio the

address space. When both CORBA objects (e.g. the
same address space, clever ORBexpress middleware ca

communication between objects. And as for the previ
pluggable transport scenario, this CORBA enhancérisen
completely transparent to users of the transpottis T
configuration was tested using the same two OHerathe
first configuration. As you can sedable 7 shows a
tremendous performance improvement over the prsviou
configurations.

Table 7 - INTEGRITY/PPC OE Round Trip Metrics using a
ResourceFactory

n
deployed on the same processor and in the samessddr

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip 244 492 155 231
time in usecs:

% Improvement over 92.7 93.2 89.2 86.9
TCP/IP

% Improvement over 89 89.7 85.1 81.2
INTCONN

5. FUTURE SCA CORE FRAMEWORKS

likely provide static deployment optimizations whiconsist

in trying to avoid performing the same task morantionce
during the deployment of components [3]. Both the
ExecutableDevice file caching feature and the otch
registration feature described in this paper araticst
deployment optimizations. Static deployment featwan be
used to get a deterministic behavior from an SCAeCo
Framework. Determinism is a crucial first step todga
certifications such DO-178B and Evaluation Assueanc
Level (EAL).

In the future, CRC will work on features such earse
code generation of a DeviceManager and an
ApplicationFactory. These two components embody the
component deployment engine of the SCA and thezefor
read large quantities of metadata files to dynaltyidand
suitable target SCA Devices for the deploymentitieent
SCA components. For some platforms, the dynamicsibec
making that takes place to choose SCA target Dsvicaot
required. Being able to generate a DeviceManagedr aan
AspplicationFactory that follow a fix deployment ategy
will help further reduce footprint requirements dmabt up
times. as well as obtaining a more deterministizalvéor.

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

CRC's goal is to be able to offer radio manufaetsir the most appropriate communication path, signitican
the possibility of modeling and implementing their performance gains can be obtained. And for perfaoea
components for a standard SCA Core Framework andeo the ultimate SCA deployment configuration involtbe use
a modeling tool to generate the missing piecessfatic of a ResourceFactory.
deployment when needed. This approach most likely'tw
require any changes in the source code of exisHG@ Finally, the paper introduced the concept of stati
components. Standard SCA component assembliesbwill deployment optimizations and explained that itXpeeted
able to benefit from these new static deploymenthat those features can provide more deterministitavior
optimizations without having to be modified. It ile very and further reduce static and dynamic memory requénts.
similar to what can already be done for applicatiovith a
ResourceFactory. 10. REFERENCES

6. CONCLUSION [1]] JTRS Standardsittp://sca.jpeojtrs.mil/
[2] Bernier S., “Evolution of the SCA”"Proceedings of the
International Software Radio Conferencéondon, June

This paper started by explaining that in orderupp®rt the 2007.
plug'n’play of reusable software components, thé\3€lies [3] Bernier S., Bélisle C., “Taking the SCA to Newontiers”,
on large quantities of files. It was also estatdisthat the Proceedings of the SDR'06 Technical Conferein@vember
boot up time of an SCA radio is directly relatedte speed 2006

of its file system. The choice of a file systemhiealogy is [4] S. Leblanc, “Case Study: SCA Software-Defineatii®, The

. . ; AN/GRC-245 Radio”, International Software Radio
amongst the most important system design decisfons ConferenceJune 2009, London, UK.

performances. [5] Mark Turner, “Harris SDR Solutions — ScalabReusable,
and Secure”,International Software RadjoLondon, UK,

And since the SCA is very file-intensive, the pape June, 2004.
introduced a number of features used to optimizeaficess. [6] Bemier S., Zamora Zapata JP., “The Deploymurgoftware

. . . . - Components Into Heterogeneous SCA Platforms”,
It was explained that reading a file natively istéa than Proceedings of the SDR'08 Technical Conferer@etober

reading through the SCA file system layer. Perforcea 2008.
metrics describing the speed of file access foricglp [7] J. Belzile, "Putting it all together — Objectis and
configurations were presented. It was also madar dleat Challenges”SDRF'05 Technical Conferenc2005.

; : PR [8] C. Linn, “Designing JTRS Core Frameworks ForttBey-
the best possible way to shorten the boot up ts1e avoid Powered Platforms: 10 Techniques For SucceS®R'04

read?ng fi_Ies vyhenever possible._FeaFures that belpd Technical Conferenc€004
reading files like ExecutableDevice file cachingdathe [9] Xerces C++ Parser, http://xml.apache.org/Xei€es/
optimized DeviceManager registration were preseatedg [10] B.J. Cox, “Planning the Software Industrial vikition”,
with performance metrics. |IEEE Software magazinﬁlovember, 1990.

[11] C. SzyperskiComponent Software: Beyond Object-Oriented

. Programming 2nd ed. Addison-Wesley Professional, Boston,
The paper also described a number of features tosed 200%_ g y

reduce the memory footprint requirements of an SCA12] C. Hrustich, “CORBA for Real-Time, High Perfoance and
operating environment. It was shown that the choicéhe Embedded SystemsT-ourth International Symposium on
XML parser can make a huge difference in static and gféeczt(-)%);iented Real-Time Distributed Computingprc, p.
runtime T“emory requirements. S_peC|aI|zed XMI_' paFser [13] D.C’. Schmidt, C. O’'Ryan, O. Othman, F. KuhdsParsons,
uses as little as 15% of the dynamic memory reduivethe “Applying Patterns to Develop a Pluggable Protocols
most popular COTS XML parser and the same is tane f Framework for ORB Middleware”,Design Patterns in
static memory. This can easily translate into mgtesbof CommunicationsCambridge University Press, 2001.
memory savings. The paper also introduced techaique[14]G- Middioni, “CORBA over VMEbus Transport f@oftware

Defined Radios”, www.motorola.com, 2005.
transparent to the SCA component developer thatseae [15] P. Balister, M. Robert, J. Reed, “Impact oé tise of CORBA

significant amount of memory by exploiting the cept of for Inter-Component Communication in SCA Based B3di
address space collocation. SDR’06 Technical Conferenc®rlando, Fl, November, 2006.
[16] Sarvpreet Singh, M. Adrat, S. Couturier, M. tAmiler, M.

The paper also covered one aspect of middleware 52559'1 S. ?grr:ieé,ﬁ“stclf\-gas?ﬁ 'ﬂﬂ?gﬂ%ﬂ%gﬁ?%
performances. The use of p!uggable transports td)g@er SDR’OIQ 'ﬁacr?r:ri]cal C?);fergngoog ne
performances was described. Metrics for different
deployment configurations clearly demonstrated that
CORBA performances can be made more than acceptable
with a minimum of SCA expertise. When CORBA
middleware is given the opportunity to dynamicailyoose

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement mustibeluded on the cover
sheet for the paper (either email or fax)—not anphper itself.

“The authors represent that the work is original tirey are the author or authors of the work, exftspmaterial
guoted and referenced as text passages. uthanswtﬂdL?re that they are willing to transfer the aigiyt of the
abstract and the completed paper to the SDR Foourpurposes of publication in the SDR Forum Confeee
Proceedings, on associated CD ROMS, on SDR Forurh [@éges, and comﬂllatlons and derivative works
related to this conference, should the paper bepded for the conference. Authors are permittecepsoduce
their work, and to reuse material in whole or imtpeom their work; for derivative works, howeveych authors
may not grant third party requests for reprintsemublishing.”

Government employees whose work is not subjecbp?/ni:%ht should so certify. For work performed unde
ny_

U.S. Government contract, the U.S. Government bgalty-free permission to reproduce the author'skvor
official U.S. Government purposes.

Proceedings of the SDR '09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

