
Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 - SCA ADVANCED FEATURES -

OPTIMIZING BOOT TIME, MEMORY USAGE, AND MIDDLEWARE
COMMUNICATIONS

Steve Bernier (CRC Ottawa, Canada; steve.bernier@crc.gc.ca);
Charles Auger (CRC Ottawa, Canada; charles.auger@crc.gc.ca);

Juan Pablo Zamora Zapata (CRC Ottawa, Canada; juan.zamora@crc.gc.ca);
Hugues Latour (CRC Ottawa, Canada; hugues.latour@crc.gc.ca);

Mathieu Michaud-Rancourt (CRC Ottawa, Canada; mmrancou@crc.gc.ca)
Communications Research Centre Canada (CRC)

Ottawa, Ontario, Government of Canada.

ABSTRACT

This paper describes a list of advanced features that can be
used to optimize boot time, memory footprint and
communication speed for SCA Radios. The paper first
describes the most common performance issues and then
presents a number of advanced SCA features that can be
used to address each issue. Each feature is discussed in
details to exhibit under which condition they can best
perform. Performance metrics are presented for each feature.
Finally, the paper concludes with an outlook on the next
wave of advanced optimization features.

1. INTRODUCTION

The Joint Tactical Radio Systems (JTRS) is a US DoD
program. Its objective is to provide the DoD with needed
communication capabilities through a family of affordable,
interoperable radios. The JTRS radio sets are Software
Defined Radios (SDRs) that can be used to quickly field
new communications capabilities. The JTRS program
achieves its goal by maximizing the reusability of common
software and hardware for different radios.

 The software implemented for JTR radio sets must
comply with the Software Communications Architecture
(SCA) specification [1]. The SCA specification describes a
Core Framework (CF) which provides the infrastructure to
allow software components to plug-and-play. The SCA Core
Framework specification also describes set of rules and APIs
that must be used by developers of SCA-compliant software
components.

 The term “SCA Radio” is often used as a synonym for
“Software Defined Radio”. However, the later have been
around for much longer than SCA Radios. Software has

been used in communication devices for decades. SCA
Radios only started to be deployed a few years ago.
However, due to more stringent portability and
interoperability requirements, SCA radios generally contain
much more software than previous generations of SDRs. To
be more specific, SCA radios use some software to process
the input/output signals. Most SCA Radios contain several
million lines of source code. And as a result, SCA radios
generally take longer to boot and use more memory than
older SDRs.

 The first generation of SCA Radios was considerably
slower to boot and required a large amount of runtime
memory. Unfortunately, that generation of SCA radios is at
the source of most of the bad press the SCA has suffered
from. However, many years of research and development
have enabled the SCA community to address those issues
and deploy SCA radios that meet the most stringent
requirements [2, 3, 4, 5].

 This paper describes several optimizations and system
design approaches that have been proven to address some of
the most serious performance issues of SCA radios. This
paper introduces novel features and revisits features
introduced in previous papers [6, 7, 8]. Section 1 of this
paper addresses boot time optimizations, section 2 discusses
memory footprint optimizations and section 3 presents
communication speed optimizations. Section 4 takes a look
at the future of SCA Core Frameworks and section 5
concludes the paper

2. BOOT TIME OPTIMIZATIONS

The SCA relies on software components that must be able to
plug’n’play with each other. In addition, the SCA supports
plug’n’play of components that might run on different
processing devices. SCA components are very modular and

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

are described using a number of different files containing
meta-data. An SCA waveform application is essentially an
assembly of components. Assembly descriptors identify
which components need to be instantiated, how they need to
be interconnected, and what should be the default values for
each of their configurable properties. All that assembly
information is stored in a number of files. The same is true
for node assemblies, which describe Devices and Services
that need to be launched upon power-up.

 In order to run the different components of an assembly,
the SCA CF must read a number of files and parse the
metadata they contain. For each component to be deployed,
it must also download the binary code to the selected target
Device for execution. This means reading, transferring, and
writing many files.

 The above discussion shows that the SCA is file centric;
it relies on the use of a file system for flexibility and
modularity purposes. But the fact that file system access is
typically slow on embedded systems has the consequence of
introducing delays that can significantly affect the boot time
of a platform. The sub-sections below present some of the
most common issues along with optimizations that can help
minimize their effects.

2.1 File System Integrity

Given the fact that the SCA file system contains critical
information, the integrity of it is fundamental to the proper
functioning of an SCA radio. There are many ways to ensure
file system integrity. One common technique is to perform
an integrity check every time the SCA Radio is powered.
Depending on the type and size of file system being used,
this check can take anywhere from a few seconds to over a
minute.

 One way to minimize the impact of a file system check
on the boot time is to make most of the file system read-
only. The integrity check only needs to be performed on the
portion of the file system that is being used for writing. The
SCA Core Framework needs very little storage for writing
files as it mostly reads them. Only the SCA Devices being
used as targets for deployment of software components need
significant storage for writing. And this can actually be
alleviated with a caching feature (see section 2.2.4
ExecutableDevice File Caching).

 The choice of the file system driver has also been
proven to make a substantial difference. Some file systems
have been able to perform in a few seconds what other file
systems take tens of seconds. Another way of avoiding a
lengthy file system check is to use a journaling file system,

which safeguards the integrity in real-time as files are being
written and deleted.

2.2 Native File Access

Most embedded systems use flash memory which can be
very slow compared to run-time memory. SCA Radios are
no exception. It is therefore crucial to use fast flash memory.
But in any case, using a Core Framework that is capable of
avoiding or optimizing file access will directly translate into
time savings for Radio boot up.

2.2.1 DomainManager Native File Access

The DomainManager accepts registration of all
DeviceManagers. A DeviceManager is one of the first SCA
components to be started upon power up. In fact, a single
SCA radio might start several DeviceManagers to take care
of several boards. The DeviceManager does a fair amount
of file reading to learn which components (SCA Devices and
Services) need to be launched. Unless the DeviceManager is
hard-coded to launch all the right components and configure
them appropriately, there is no way to avoid reading the
node assembly metadata files.

 Once the DeviceManager has read the metadata and
launched the SCA Devices and Services, it must register
with a DomainManager. The DomainManager needs to
collect the full list of Devices and Services registered by all
DeviceManagers running in the SCA radio. This is
necessary for application deployment.

 However, when the DeviceManager registers with a
DomainManager, because of the lack of a standard API, it
cannot provide all the necessary deployment information
about its Devices and Services. Therefore, the
DomainManager must download and read the Metadata for
each registered SCA Device.

 When the registering DeviceManager is running on the
same processor as the DomainManager, the metadata for
Devices and Services is almost assured to be accessible
natively by the DomainManager. Using native file access,
the DomainManager can read up to 40% faster, which can
translate into the saving of several seconds. Table 1 shows a
performance comparison regarding how much time it takes
to read a file natively compared to via the SCA file system
layer. The tests were executed in two different operating
environments as illustrated in Table 1.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Table 1 - File Access Time Metrics
Test System File

Size
SCA File
System

Native File
System

Gain

Linux, Pentium 3GHz 4MB 355ms 20ms 94%
INTEGRITY, PPC 405,
400 MHz

1.5MB 2500ms 1500ms 40%

2.2.2 DeviceManager Optimized Registration

When a registering DeviceManager is running on a different
processor from the DomainManager, native file access
acceleration can’t be used. One workaround is to actually
add a specialized registration API on the DomainManager,
which can be used by a DeviceManager to provide
deployment information (gathered by the DeviceManager
during the node boot) regarding the registering Devices and
Services.

 The regular registration process for an SCA Device uses
a minimum of 19 CORBA calls. Some of those calls are
very slow as they are used to copy metadata files. This
optimized registration feature can provide significant
performance gains and speed up the boot up sequence by
avoiding the majority of those calls. Table 2 shows metrics
comparing the performance of optimized registration versus
standard registration. The tests used to produce those
metrics employed two different operating environments with
variations of 1 Device and 4 Devices in each. The tests were
used to measure how long it took the DeviceManager to
register its Devices with a DomainManager running on a
different processor.

Table 2 - DeviceManager Registration Time Metrics

Configuration Standard
Registration

Optimized
Registration

Gain

Linux Pentium, 2 GHz,
1 Device

0.56 sec 0.19 sec 66%

Linux Pentium, 2 GHz,
4 Devices

1.53 sec 0.24 sec 84%

LynxOS PPC 405, 400
MHz, 1 Device

0.86 sec 0.13 sec 85%

LynxOS PPC 405, 400
MHz, 4 Devices

2.33 sec 0.22 sec 91%

2.2.3 ExecutableDevice Native file access

Since the SCA is a distributed system, it is assumed that
SCA components need to be downloaded to target SCA
Devices (i.e. a LoadableDevice or an ExecutableDevice).
However, target SCA Devices can also be implemented to
determine if the files being downloaded are natively
accessible. When that is the case, the deployment of an
application can benefit from the performance improvements
described in table Table 1.

 Ultimately, all file copies, even native files copies can
be avoided by allowing target SCA Devices to natively
access the files where they have originally been installed.
With this feature, time consuming copies can be avoided.
Saving copies of each component artefact can be very
significant; the binary code alone can be several megabytes.
But this feature may not be useful if the file system where
the files are located is set to read only.

2.2.4 ExecutableDevice File Caching

Another way to avoid file copies is to make target SCA
Devices use a file cache. Target Devices can locally save the
files they are sent. With this feature, a copy is only made the
first time a same file is sent to a same target Device, which
can be useful for SCA radios that always run the same
applications, deployed using the same target Devices.

 Such a feature requires that target SCA Devices have
access to a permanent file system (e.g. flash). Since, the first
deployment usually happens during manufacturing, fielded
radios benefit from this feature. For SCA Devices using
volatile memory, benefits are obtained when the same
application is repeatedly launched/shutdown without
powering down the Radio. Table 1 provides estimates of the
time it takes to copy files and thus how much time can be
saved with this caching feature, which is quite significant
given the fact that the deployment of an SCA application
typically involves the copy of several binaries. This feature
can also be used in combination with native file access.

3. MEMORY FOOTPRINT OPTIMIZATIONS

3.1 XML Parsing

All of the SCA metadata which contains information about
SCA software components and assemblies is described in
XML. CRC measured how much time and dynamic memory
is required to parse the metadata information using three
different approaches. The first approach uses a standard
COTS parser called Xerces-C++ [9]. The second approach
consists in reading a digested XML format instead of the
standard text format. The third approach consists in using a
specialized parser that can read the standard SCA XML
files. The tests were executed on a Linux Desktop 3 GHz
Pentium processor using a metadata file containing the
description of 50 component properties. The results are
shown in Table 3 and described in the next three sections.
Each test was executed 10 times and the metrics were
averaged out.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Table 3 - Parsers Performance Metrics
Parsers Static

Memory
Dynamic
Memory

Parsing
Speed

Xerces-C++ 3,000 KB 66 KB 6.7 ms
Digested 300 KB 8 KB 1.1 ms
Specialized 420 KB 10 KB 1.7 ms

3.1.1 Xerces-C++ Parsers

Xerces-C++ is a very popular open-source XML parser that
has been compiled for a few embedded system operating
environments, but it is mainly used for desktop applications.
CRC used Xerces-C++ and implemented a number of
parsers to read the different XML files of the SCA. Xerces-
C++ is available as a library of several mega bytes in size.

 The SCA parsers were built using static linking which
required 2.6MB of the Xerces-C++ library. The total static
size of the parsers was of 3MB. Table 3 presents the
performance metrics for execution of the parsers.

3.1.2 Digested XML Parsers

A digested XML parser is a parser that reads XML files in
an intermediate binary format. The idea behind this
approach is that computers can process digested binary files
much faster than plain text files that need to be parsed
character by character.

 The digested file format is produced off-line by reading
the standard XML and saving only the relevant information
in a binary format. CRC created a few variations of the
binary format along with binary readers that could read the
same XML files as the Xerces-C++ parsers. The advantage
of this approach is performance, but the disadvantage is the
proprietary file formats used for the digested information.

 The total static footprint needed for these parsers is 300
KB which represents a major improvement over the parsers
based on Xerces-C++. As shown in Table 3, the digested
XML parsers also used much less runtime memory and
performed much faster.

3.1.3 Specialized XML Parsers

A specialized XML parser is a hand-crafted parser that
knows specifically how to read the SCA XML files. The
CRC specialized parsers are based on state machines
inferred from the SCA XML file formats. The state
machines have been optimized and only the relevant
information is parsed.

 The total static footprint for the specialized XML
parsers is of 420 KB which is still a very impressive
improvement over the parsers based on Xerces-C++. As
show in Table 3, this approach is virtually as good as the
digested XML parser approach without relying on a
proprietary file format.

3.2 Address Space Collocation

The SCA specification employs many concepts from the
Component Based Development (CBD) paradigm [10, 11],
which promotes reusability and adds flexibility to system
designs by creating applications from an aggregation of
independent components. For an SCA application, this
translates into multiple Resources, each performing a subset
of the waveform’s functionality (e.g. FFT, encoding,
filtering).

 While having many advantages at the design level, this
approach, compared to having a single Resource that
implements the full functionality of an application, may
increase the static footprint of the application, especially in
environments that do not support shared libraries. This is
due to the basic OS/CORBA/SCA functionality that each
Resource must have, independently of their application-
specific functionality. For example, a typical size for a fully
implemented, statically linked, SCA Resource that uses
several properties and ports and implements complex signal
processing algorithms is 1 MB. Approximatly 50% of that
footprint (500 KB) is associated to the fixed-cost
infrastructure for a component.

 In memory-constrained environments, one way to
alleviate the cost of extra footprint for multiple components
is to use the concept of ResourceFactory. An SCA
ResourceFactory can be used to launch many Resources
inside a single address space. Therefore, at the OS level,
instead of having one process (i.e. one address space) for
each Resource, a single process is created for the
ResourceFactory which then creates different tasks (threads)
for the different Resources to be launched. This allows the
fixed-cost for basic OS/CORBA/SCA functionality to be
paid only once for the address space, and re-used by the
different tasks. And logically, the overall footprint
improvement increases proportionally to the number of
Resources being created inside a ResourceFactory rather
than as separate address spaces. For example, using the
above numbers of 1 MB per Resource, 50% of which is the
fixed cost, an application composed of ten Resources may
save approximately 5 MB of static footprint when launched
by a ResourceFactory.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 Furthermore, using appropriate SCA tools, 100% of the
source code for a ResourceFactory can be generated and
does not require any modification to previously developed
components for them to run into a ResourceFactory address
space.

 The concept of co-localizing multiple components in a
single address space can also be applied to other SCA
entities. For example, on single node systems, the
DomainManager and DeviceManager can be co-located in
the same address space, yielding similar improvements (25%
for two components) as for Resources. Note that co-
localizing components inside a same address space may also
yield savings in terms of dynamic memory (e.g. heap) usage.
Co-location can also be used for SCA Devices and services.

4. COMMUNICATION SPEED OPTIMIZATIONS

4.1 The Need for Middleware

The SCA relies on software components that must be able to
plug’n’play with each other. Software components built
from third party organizations may be implemented using
different programming languages. Interoperability between
software components can’t rely on source code artefacts
(e.g. header files or libraries), it must be achieved through
middleware. For that purpose, the SCA has chosen the well-
established standard for middleware called CORBA. The
use of middleware is at the heart of the component based
development paradigm. This fairly recent programming
paradigm is widely used in other markets and tries to mimic
the hardware component paradigm.

 The hardware component industry has been very
successful at producing reusable components. Hardware
components can easily be assembled together even if they
come from different manufacturers. And this can be done
without the implicit knowledge of how components have
been created. The assembly of components only relies on
their behavior specification (e.g. pinout, protocol) and their
requirements (e.g. voltage). The software component
paradigm strives to achieve the same success with software.

 CORBA allows components to be connected to each
other during runtime. Connections are not achieved using
source code, a compiler, and a linker. SCA components are
independent of one another and they provide interfaces used
through connections. This is akin to hardware components
connected by traces between pins on a printed circuit board.
CORBA has been used for real time embedded systems for a
long time. During the late 1990s, CORBA evolved and
became more appropriate for smaller and faster embedded
systems. One key CORBA feature for realtime systems is the
use of specialized “pluggable transports” [12, 13]. This

feature allows CORBA objects (e.g. SCA Components) to
communicate using specialized, fast, communication
transports. Using pluggable transports can yield impressive
performance [7, 14].

 Unfortunately, early SCA radios did not make use of
pluggable transports; they relied on standard TCP/IP as a
transport for CORBA. The use of TCP/IP is fine for
communications between components located across the
Internet, but it is very slow for communications between
components within a same embedded platform.

4.1 CORBA Performances

The performance of CORBA in the context of the SCA is
nearly absent from the research community literature. It has
only been covered by a few papers [7, 14, 15, 16]. The goal
of this section of the paper is to provide one more
contribution. CRC has created a simple SCA application to
measure how long it takes to transfer a buffer of data
between SCA components. The application is called
“PerformanceApp” and is made of three SCA Resource
components. The first Resource is called the
PerformanceAnalyser. It is used to produce variable size
sequences of octets or doubles and to send the sequences to
another Resource. Each sequence produced is time-stamped
just before being sent. The PerformanceAnalyser can also
receive the time-stamped sequences and compute the time it
took for a sequence to travel back to the
PerformanceAnalyser.

 The second SCA Resource is called PassThrough. This
Resource receives data sequences and simply retransmits
them. In the application used for this paper, the PassThrough
Resource retransmits all sequences back to the
PerformanceAnalyser. The third and last component of the
application is the AssemblyController Resource used to
coordinate the application functionality.

 CRC executed the PerformanceApp in three different
application deployment configurations and measured the
average time it takes for a data sequence to travel from the
PerformanceAnalyser component to the PassThrough
component and back. For each deployment configuration,
two types of data sequence were transmitted: sequence of
octets (8 bits) and sequences of doubles (64 bits). In
addition, each type of sequence was transmitted in two
different sizes: 1024 or 2048 elements. For each test, a
thousand sequences were transmitted. Each test scenario was
executed three times and the measurements were averaged.

 The first configuration had both the
PerformanceAnalyser and the PassThrough components
deployed on the same processor. In this configuration, the

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

transport used was TCP/IP. The tests were performed using
two different Operating Environments (OE) running the
SCARI++ GT Core Framework and ORBexpress RT. The
first OE consisted of a laptop running Linux, using an Intel
Centrino processor clocked at 2 Ghz. The second OE
consisted of a single board computer running the Green Hills
INTEGRITY operating system on a AMCC 405GPr
PowerPC processor clocked at 400 Mhz. Table 4 and Table 5
present the average round-trip times for each test in micro-
seconds.

Table 4 – Intel/X86 OE Round Trip Metrics using TCP/IP

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip
time in usecs:

80 129 66 74

Table 5 – INTEGRITY/PPC OE Round Trip Metrics using
TCP/IP

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip
time in usecs:

3334 7272 1428 1767

 The second configuration is exactly the same as the first
configuration with the INTEGRITY/PPC OE, except for the
CORBA transport that was used. In this configuration,
TCP/IP was replaced by a pluggable transport called
INTCONN. The ORBexpress RT ORB makes use of a this
high-speed proprietary transport available for the
INTEGRITY RTOS. It is important to note that this test was
done without changing any source code in any of the SCA
components. The test was conducted by telling the CORBA
middleware to first use INTCONN if possible. And this
configuration can actually be done at the command line for
properly implemented SCA components. Table Table 6
presents the average round-trip time for each test in micro-
seconds and the percentage of improvement over the first
test configuration.

Table 6 - INTEGRITY/PPC OE Round Trip Metrics using
INTCONN

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip
time in usecs:

2215 4768 1042 1273

% Improvement over
TCP/IP

33.56 34.43 27.02 27.98

 The third configuration had both the
PerformanceAnalyser and the PassThrough components
deployed on the same processor and in the same address
space. It was tested with the same PowerPC OE used in the
previous configurations. This last configuration relies on the
support of ResourceFactory by an SCA Core Framework. In

this case, with proper SCA modeling tools, an SCA
ResourceFactory can be automatically generated to allow the
instantiation of pre-existing SCA Resource into a single
address space. When both CORBA objects (e.g. the
PerformanceAnalyser and the PassThrough) are located in a
same address space, clever ORBexpress middleware can
bypass any transports and use function invocations for
communication between objects. And as for the previous
pluggable transport scenario, this CORBA enhancement is
completely transparent to users of the transport. This
configuration was tested using the same two OEs as for the
first configuration. As you can see, Table 7 shows a
tremendous performance improvement over the previous
configurations.

Table 7 - INTEGRITY/PPC OE Round Trip Metrics using a
ResourceFactory

Sequence type: Double Octet
Number of Elements: 1024 2048 1024 2048
Average round trip
time in usecs:

244 492 155 231

% Improvement over
TCP/IP

92.7 93.2 89.2 86.9

% Improvement over
INTCONN

89 89.7 85.1 81.2

5. FUTURE SCA CORE FRAMEWORKS

The next generation of SCA Core Frameworks will provide
even more optimizations features. New features will most
likely provide static deployment optimizations which consist
in trying to avoid performing the same task more than once
during the deployment of components [3]. Both the
ExecutableDevice file caching feature and the optimized
registration feature described in this paper are static
deployment optimizations. Static deployment features can be
used to get a deterministic behavior from an SCA Core
Framework. Determinism is a crucial first step towards
certifications such DO-178B and Evaluation Assurance
Level (EAL).

 In the future, CRC will work on features such as source
code generation of a DeviceManager and an
ApplicationFactory. These two components embody the
component deployment engine of the SCA and therefore
read large quantities of metadata files to dynamically find
suitable target SCA Devices for the deployment of different
SCA components. For some platforms, the dynamic decision
making that takes place to choose SCA target Devices is not
required. Being able to generate a DeviceManager and a
ApplicationFactory that follow a fix deployment strategy
will help further reduce footprint requirements and boot up
times. as well as obtaining a more deterministic behavior.

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

 CRC’s goal is to be able to offer radio manufacturers
the possibility of modeling and implementing their
components for a standard SCA Core Framework and to use
a modeling tool to generate the missing pieces for static
deployment when needed. This approach most likely won’t
require any changes in the source code of existing SCA
components. Standard SCA component assemblies will be
able to benefit from these new static deployment
optimizations without having to be modified. It will be very
similar to what can already be done for applications with a
ResourceFactory.

6. CONCLUSION

This paper started by explaining that in order to support the
plug’n’play of reusable software components, the SCA relies
on large quantities of files. It was also established that the
boot up time of an SCA radio is directly related to the speed
of its file system. The choice of a file system technology is
amongst the most important system design decisions for
performances.

 And since the SCA is very file-intensive, the paper
introduced a number of features used to optimize file access.
It was explained that reading a file natively is faster than
reading through the SCA file system layer. Performance
metrics describing the speed of file access for typical
configurations were presented. It was also made clear that
the best possible way to shorten the boot up time is to avoid
reading files whenever possible. Features that help avoid
reading files like ExecutableDevice file caching and the
optimized DeviceManager registration were presented along
with performance metrics.

 The paper also described a number of features used to
reduce the memory footprint requirements of an SCA
operating environment. It was shown that the choice of the
XML parser can make a huge difference in static and
runtime memory requirements. Specialized XML parsers
uses as little as 15% of the dynamic memory required for the
most popular COTS XML parser and the same is true for
static memory. This can easily translate into megabytes of
memory savings. The paper also introduced techniques
transparent to the SCA component developer that can save
significant amount of memory by exploiting the concept of
address space collocation.

 The paper also covered one aspect of middleware
performances. The use of pluggable transports to get better
performances was described. Metrics for different
deployment configurations clearly demonstrated that
CORBA performances can be made more than acceptable
with a minimum of SCA expertise. When CORBA
middleware is given the opportunity to dynamically choose

the most appropriate communication path, significant
performance gains can be obtained. And for performance,
the ultimate SCA deployment configuration involves the use
of a ResourceFactory.

 Finally, the paper introduced the concept of static
deployment optimizations and explained that it is expected
that those features can provide more deterministic behavior
and further reduce static and dynamic memory requirements.

10. REFERENCES

[1]] JTRS Standards, http://sca.jpeojtrs.mil/.
[2] Bernier S., “Evolution of the SCA”, Proceedings of the

International Software Radio Conference, London, June
2007.

[3] Bernier S., Bélisle C., “Taking the SCA to New Frontiers”,
Proceedings of the SDR’06 Technical Conference, November
2006

[4] S. Leblanc, “Case Study: SCA Software-Defined Radio, The
AN/GRC-245 Radio”, International Software Radio
Conference, June 2009, London, UK.

[5] Mark Turner, “Harris SDR Solutions – Scalable, Reusable,
and Secure”, International Software Radio, London, UK,
June, 2004.

[6] Bernier S., Zamora Zapata JP., “The Deployment of Software
Components Into Heterogeneous SCA Platforms”,
Proceedings of the SDR’08 Technical Conference, October
2008.

[7] J. Belzile, “Putting it all together – Objectives and
Challenges”, SDRF’05 Technical Conference, 2005.

[8] C. Linn, “Designing JTRS Core Frameworks For Battery-
Powered Platforms: 10 Techniques For Success”, SDR’04
Technical Conference, 2004

[9] Xerces C++ Parser, http://xml.apache.org/Xerces-C++/
[10] B.J. Cox, “Planning the Software Industrial Revolution”,

IEEE Software magazine, November, 1990.
[11] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, 2nd ed. Addison-Wesley Professional, Boston,
2002.

[12] C. Hrustich, “CORBA for Real-Time, High Performance and
Embedded Systems”, Fourth International Symposium on
Object-Oriented Real-Time Distributed Computing, isorc, p.
345, 2001.

[13] D.C. Schmidt, C. O’Ryan, O. Othman, F. Kuhns, J. Parsons,
“Applying Patterns to Develop a Pluggable Protocols
Framework for ORB Middleware”, Design Patterns in
Communications, Cambridge University Press, 2001.

 [14] G. Middioni, “CORBA over VMEbus Transport for Software
Defined Radios”, www.motorola.com, 2005.

[15] P. Balister, M. Robert, J. Reed, “Impact of the use of CORBA
for Inter-Component Communication in SCA Based Radio”,
SDR’06 Technical Conference, Orlando, Fl, November, 2006.

[16] Sarvpreet Singh, M. Adrat, S. Couturier, M. Antweiler, M.
Phisel, S. Bernier, “SCA-Based Implementation of Stanag
4285 in a Joint Effort Under the NATO RTO/IST Panel”.
SDR’08 Technical Conference, 2008

Proceedings of the SDR ’09 Technical Conference and Product Exposition, Copyright © 2009 SDR Forum, Inc. All Rights Reserved

Copyright Transfer Agreement: The following Copyright Transfer Agreement must be included on the cover
sheet for the paper (either email or fax)—not on the paper itself.

“The authors represent that the work is original and they are the author or authors of the work, except for material
quoted and referenced as text passages. Authors acknowledge that they are willing to transfer the copyright of the
abstract and the completed paper to the SDR Forum for purposes of publication in the SDR Forum Conference
Proceedings, on associated CD ROMS, on SDR Forum Web pages, and compilations and derivative works
related to this conference, should the paper be accepted for the conference. Authors are permitted to reproduce
their work, and to reuse material in whole or in part from their work; for derivative works, however, such authors
may not grant third party requests for reprints or republishing.”

Government employees whose work is not subject to copyright should so certify. For work performed under a
U.S. Government contract, the U.S. Government has royalty-free permission to reproduce the author's work for
official U.S. Government purposes.

